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Abstract

We present a traffic simulation named DeepTraffic where the planning systems for
a subset of the vehicles are handled by a neural network as part of a model-free,
off-policy reinforcement learning process. The primary goal of DeepTraffic is to
make the hands-on study of deep reinforcement learning accessible to thousands of
students, educators, and researchers in order to inspire and fuel the exploration and
evaluation of deep Q-learning network variants and hyperparameter configurations
through large-scale, open competition. This paper investigates the crowd-sourced
hyperparameter tuning of the policy network that resulted from the first iteration
of the DeepTraffic competition where thousands of participants actively searched
through the hyperparameter space.

1 Introduction

DeepTraffic is more than a simulation, it is a competition that served and continues to serve as a
central project for a course on Deep Learning for Self-Driving Cars. The competition has received
over 24 thousand submissions on https://selfdrivingcars.mit.edu/deeptraffic. Our paper considers
how this competition served as a means to crowdsource DQN hyperparameters by exploring the
viability of competitor submissions to successfully train agents. Such an exploration raises practical
questions, in a context of a specific simulated world, about what works and what doesn’t for using
deep reinforcement learning to optimize the actions of an agent in that world.

The latest statistics on the number of submissions and the extent of crowdsourced network training
and simulation are as follows:

• Number of submissions: 24,013
• Total network parameters optimized: 572.2 million
• Total duration of RL simulations: 96.6 years

Deep reinforcement learning has shown promise as a method to successfully operate in simulated
physics environments like MuJoCo [25], in gaming environments [2, 14], and driving environments
[19, 20]. Yet, the question of how so much can be learned from such sparse supervision is not yet well
explored. We hope to take steps toward such understanding by drawing insights from the exploration
of crowdsourced hyperparameter tuning (as discussed in §4) for a well-defined traffic simulation
environment. This includes analysis of network size, temporal dynamics, discounting of reward, and
impact of greedy behavior on the stability and performance of the macro-traffic system as a whole.

The central goals and contributions of DeepTraffic are:
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Figure 1: Four perspectives on the DeepTraffic environment: the simulation, the occupancy grid, the
collision avoidance system, and the slice of the occupancy grid that represents the reinforcement
learning “state” based on which the policy network learns to estimate the expected reward received
by taking each of the five available actions.

• Exploration and Education: Provide an accessible, frictionless tool to explore deep re-
inforcement learning concepts for both complete beginners and advanced researchers in
reinforcement learning. The goal of DeepTraffic, in this aspect, is for competitors to gain un-
derstanding, intuition, and insights of how these methods can be tuned to solve a real-world
problem (i.e., behavioral layer of autonomous vehicles movement planning).

• How Humans Perform Hyperparameter Tuning: Provide observations on how thousands
of humans explore hyperparameters of a “black box” machine learning system.

• Autonomous Vehicles in Heterogeneous Traffic Simulation: Provide a methodology for
studying impact of autonomous vehicles in traffic environments that involve both manually
and autonomously controlled vehicles.
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Figure 2: A scatter plot of submission scores. Each black circle corresponds to a DeepTraffic
submission. The red line shows how the top score increased over time.

2 Related Work

2.1 Deep Reinforcement Learning Methods

In recent years, deep reinforcement learning, when trained on sufficiently large datasets of experiences,
has been used to surpass human level performance across a variety of discreet action games [14] [15],
widening the previously narrow domains RL had been successful in [24] [16] [5]. These methods use
variants of [26] deep Q networks, an extension of [27], which learn to predict the future discounted
returns of state-action tuples.

Outside of Atari-like game environments, which have relatively small action spaces, deep reinforce-
ment learning has been used successfully in (1) simulated physics environments like [25] [12] as well
as in (2) driving specific applications [20].

2.2 Deep Reinforcement Learning Benchmarks and Competitions

A notable feature of the machine learning community is the popularity of competitions, which exist
both as benchmarks on popular datasets [17], [4], [10] and as formally hosted events. They are so
popular that hosting such competitions as a means to crowdsource problem solutions has even become
a feasible business model, e.g. Kaggle. However, reinforcement learning competitions present a set
of challenges not present in supervised learning competitions [28]. Rather than evaluation being
a passive, static process in which there is a test set of input/outputs, in RL evaluation is an active,
dynamic process, and often stochastic process, in which an algorithm interacts with an environment.
When designing an RL competition, there are several choices to make when deciding on an evaluation
metric: (1) whether to measure performance online (while learning) or offline (after learning) and (2)
whether to measure the accumulated reward or a performance metric. Further, practical considerations,
for large competitions include how to easily and safely run a competitor’s, potentially hazardous,
code and how to minimize the number of trials needed to fairly compare submissions.

2.3 Hyperparameter Tuning

As in other machine learning domains, hyperparameter tuning is an important component of rein-
forcement learning. There are several popular types methods for tuning the hyperparameters of neural
networks: grid search, random search [3], simulated annealing [9], bandit-optimization [11] [22], and
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black-box Bayesian Optimization methods [6] [18] [21], as well as manual tuning. In this paper, we
look at crowdsourcing as a means for hyperparameter tuning.

(a) Circle color indicates number of hidden layers from 1 layer (blue) to 7 layers (yellow).

(b) Circle color indicates number of training iterations from 0 (blue) to 106 (yellow).

Figure 3: Scatter plots of the number of learnable parameters of a submission and submission score.
Submissions with scores below 70 mph are not shown.

3 DeepTraffic Simulation and Competition

DeepTraffic is a simulation and deep reinforcement learning environment in which one or more
vehicles (red cars) must navigate through dense traffic (white cars) as quickly as possible. The red
cars are “intelligent” in that they are controlled by Javascript code that is provided through the online
interface, and can thus plan movement in response to current road conditions as perceived through its
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sensors. The white cars move randomly according to a stochastic model discussed in §3.1. There is
always one red ego vehicle, an agent the game screen follows.

3.1 Simulation

3.1.1 Game Environment

DeepTraffic takes place on a 7 lane highway. The highway, H , is a continuous 2d space, 140 pixels
wide by 700 pixels long. The perspective of the game follows the ego vehicle such that the nose of
the ego vehicle remains at the 175th pixel. This means, the dynamics of DeepTraffic are relative to
the ego vehicle.

When other vehicles drive off the highway, either by moving slower or faster than the ego vehicle,
they will reappear at the end of the highway opposite to where they recently disappeared. When
vehicle’s reappear, their speed and lane are chosen randomly.

The problem of perceiving the environment is abstracted away by using an occupancy grid, H ′ (see
second column of Fig. 1). A cell h′ ∈ H ′ takes on the speed of a vehicle which occupies it:

h′ =

{
speedi if ∃ci ∈ C : occupies(h′, (xi, yi))

0 otherwise

where occupies indicates whether any points of a vehicle ci occupies the space of h′.

3.1.2 Vehicle Dynamics

There are 20 vehicles in DeepTraffic. Each vehicle ci (1) occupies a space 20 pixels wide by 40 pixels
long, (2) is positioned on the highway at (xi, yi), (3) has a top speed of speedi,max, (4) travels at
a fraction of its top speed where the fraction is noted as speedi,factor, and (5) takes actions when
tmodti = 0, where t is the time in the game and ti controls when ci makes actions.

The dynamics of the cars in DeepTraffic are all relative to the ego car, c0. According to these
dynamics, a car may move vertically according the equation:

dy

dt
= −(speedi − speed0)

where speedj = speedj,max ∗ speedj,factor.

A car may also move horizontally to its desired target lane according to the equation:

dx

dt
= (xtarget − xi)/T

where T is a time constant which is equal to the decision cycle.

3.1.3 Safety System

Since the focus of DeepTraffic is to learn efficient movement patterns in traffic, the problem of
collision avoidance is abstracted away by using a “safety system”. The safety system looks at the
occupancy grid and prevents the vehicle from colliding by either (1) preventing an action which
would lead to a crash or (2) altering the speed of the vehicle.

If a vehicle is precisely 4 cells below another vehicle, it assumes the above vehicle’s speed. If the
vehicle is closer than 4 cells to an above vehicle, as can happen after lane changes, it slows down
inversely proportional to the distance. Otherwise, vehicle speeds are unaffected. Formally the safety
system is defined as:

speedi =


speedj if dlong(i, j) = 4

speedj/2 if dlong(i, j) < 4

speedi otherwise
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where the vertical distance from i to j is:

dlong(i, j) = (yj − yi)/10

The safety system can also override the vehicle’s ability to change lanes. If a vehicle is in any of the
4 occupancy grids immediately to the right (left) of the deciding vehicle, the 1 occupancy grid behind
and to the right (left) of the deciding vehicle, or in any of the 6 grids ahead and to the right (left) of
the deciding vehicle, the deciding vehicle will remain in its current lane.

3.1.4 Initialization

At the beginning of an episode of DeepTraffic, the initial locations of the vehicles is randomized such
that no vehicle is in range of any other vehicle’s safety system. Red car speeds are set to 80 mph. The
white car speeds are set to 65 mph.

The state of DeepTraffic can be expressed formally as follows:

• t: the current frame of the game.

• H: the 140x700 pixel highway.

• H ′: the 7x70 cell occupancy grid.

• C: the set of cars.

• ti: the decision frequency of car ci. Car ci chooses an action when t mod ti = 0.

• speedi,factor: the gas pedal i.

• speedi,max: the top speed of car i.

• (xi, yi): the location of car i.

• li: the target lane of car i.

3.2 Implementation

One of the defining qualities of DeepTraffic is that it is entirely implemented in Javascript, including
the simulation, the visualization, the reinforcement learning framework, the neural network training
and inference. This significantly simplifies the typical overhead of installing software required to
train a Deep RL agent and run a simulated environment. The accessibility of this environment as a
way to explore Deep RL approaches naturally motivated turning the playground into a competition
(see §3.3), and consequently an education tool. Competitors participate by submitting Javascript code
that controls the red vehicle. This code is usually one that utilizes a DQN.

The browser is a non-traditional platform to deploy a neural network. However, the browser is a
ubiquitous platform, and running someone’s code is often as trivial as visiting a web page. We chose
ConvNetJS since it uses plain Javascript, rather than many other frameworks which rely on WebGL,
which is not universally supported.

Despite its unconventionality, ConvNetJS bears resemblance to other deep learning frameworks. Data,
weights, and gradients are stored in multi-dimensional arrays. Optimizers such as SGD can be used
to train neural networks.

The competition’s default reinforcement learning algorithm was Deep Q-learning with Experience
Replay, as it is detailed in [14]. Nearly all competitors used this default implementation. Briefly,
Deep Q-learning uses a neural network to approximate an action-value function, Q(s, a), which maps
action-state pairs to the “quality” or expected future discounted return.

The network uses the following gradient to learn the Q function:

∇L(θ) = E
[( Bellman updated return︷ ︸︸ ︷

rt + γmax
at

Q(st+1, at+1; θ)−

predicted return︷ ︸︸ ︷
Q(st, at; θ)

)
∇θiQ(s, a; θi)

]
where, during each training step, many observations are sampled from replay memory.
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Name Symbol DeepTraffic Variable Name Description
Patches Ahead patchesAhead The number of cells ahead an agent

senses.
Patches Behind patchesBehind The number of cells behind an

agent senses.
Lanes to the Side lanesSide The number of lanes to each side an

agent senses.
Temporal Window temporal_window The number of previous states an

agent remembers.
Other
Autonomous
Agents

other_agents The number of non-ego vehicle
agents controlled by a clone of a
competitor’s code.

Momentum tdtrainer_options.momentum Gradient descent momentum.
Learning Rate α tdtrainer_options.learning_rate Gradient descent learning rate.
l2-regularization l2 tdtrainer_options.l2_decay The l2 regularization applied to the

weights of the neural network. This
keeps the weights of the network
small.

Batch Size tdtrainer_options.batch_size Batch size for gradient descent.
Discount Factor γ opt.gamma Future discount for reward, e.g.

r0 + γ1r1 + ...+ γtrt
Experience Size opt.experience_size The number of examples in replay

memory, i.e. the number of
previous experiences to randomly
sample from.

Epsilon Min opt.epsilon_min Epsilon is the probability that an
agent takes a random action. The
lowest value epsilon will take on
during training.

Epsilon Test Total opt.epsilon_test_time The value of epsilon used outside
evaluation.

Total Learning
Steps

opt.learning_steps_total The total number of steps the agent
will learn for. (Hopefully you set
this to the number of training
iterations)

Learning
Threshold

opt.start_learning_threshold The minimum number of examples
in experience replay memory before
the agent begins the learning
process.

Learning Steps
Before Burnin

opt.learning_steps_burning The number of random actions the
agent takes before beginning the
learning process. This is to collect a
large number of experiences

Table 1: This table summarizes the hyperparameters in DeepTraffic.

3.3 Competition

Participants in the competition are provided with a default DQN implementation [8], where they
get to configure different hyperparameters to achieve the best performance, where performance is
measured as the average speed of all the red cars. Competitors are able to change the size of the
DQN’s input by defining the number of patches/cells ahead of the front of the car, behind it and next
to the car, the network gets to look at. In addition, they can specify the network layout, meaning
adding and removing layers, and changing their sizes and activations. Beyond that, participants can
also configure training options like learning rate and regularization methods, and also reinforcement
learning specific parameters like exploration vs exploitation and future reward discounts.
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Figure 4: A box plot showing that submission scores become more robust to the stochastic nature of
the game. As more runs are used to in the evaluation score. Each run includes 10,000 simulation time
steps. A submission score is calculated by taking the median score over the runs.

Figure 5: A visualization of unique DeepTraffic submissions produced with t-SNE. The higher-
dimensional representation used to generate this plot defined submissions as vectors over the following
variables: patches ahead, patches behind, l2 decay, layer count, gamma, learning rate, lanes side,
training iterations. Circle color corresponds to submission score.

After a competitor has selected some hyperparameters they press a button to train the network in
the browser, using a separate thread, referred to as a web-worker. While training, competitors can
see improvements running live in the main visualization, as the DQN running on the main thread is
periodically replaced by the most recent version training in the web-worker. When the participants
are satisfied with the quality of their network they can submit the network for server-side evaluation
to earn a spot in the leaderboard.
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An interesting observation in the competitive chase toward greater performing Deep RL agents that
is common to many Deep RL tasks is that neither the authors nor the competitors had an explicit
model for an optimal policy. The high dimensionality and the stochastic nature of the state space
made it intractable for model-based path planning methods [7]. In the early days of the competition,
many competitors claimed that it’s impossible for the car to achieve a speed above 73 mph. Once that
barrier was broken, 74 mph became the new barrier, and so on, reaching the current socially-defined
performance ceiling of 76 mph. From the social perspective, it is interesting to observe that such self-
imposed ceilings often led to performance plateaus, much like those in other competitive endeavors
[1].

Network parameters were not shared publicly between competitors, but in several cases, small
online communities formed to distribute the hyperparameter tuning process across the members of
that community. An interesting result of such distributed hyperparameter tuning efforts was that
occasional plateaus in performance were broken by one individual and then quickly matched and
superseded by others.

3.4 Evaluation Process

Robust evaluation is an important aspect of any competition. When constructing the evaluation
process for DeepTraffic we identified the following challenge: design an evaluation process in which
(1) score variance is kept to a minimum with reasonable computing resources and (2) arbitrary
Javascript code can be run safely. Unlike many RL competitions, DeepTraffic is not scored using
accumulated reward during online learning, rather, it is scored by taking the median average-speed
over several simulation runs.

The primarily challenge in designing for (1) is that the nature of DeepTraffic is stochastic, and
therefore any finite evaluation will be based on only the starting conditions sampled. One way to
approach this problem is to design a score which aggregates over a sample of starting conditions.
Evaluation variance is then governed by the run length and the number of runs per evaluation. An
additional parameter controlling the score variance is the method which initializes the game prior to
each run.

The primary challenge in designing for (2) is that users may submit arbitrary code to DeepTraffic
and therefore (a) the program defining the DeepTraffic environment must be unalterable and (b) the
evaluation process must be secure from malicious code. Addressing (a), we run submission code
on our own server by loading the environment after user code. Addressing (b), running code in a
web-worker prevents it from performing any harmful IO operations.

4 Network Performance and Exploration

The large-scale crowdsourcing of hyperparameters through over 13,000 network submissions allows
us to gather observations about what hyperparameters have a significant impact on evaluated agent
performance and what come at a great cost without much performance gain. The key insights gathered
from this exploration are highlights in the following subsections. In support of these insights, Fig. 2
shows the evolution of submission scores over time, Fig. 3 shows the impact of network size, depth,
and training iteration, and Fig. 6 shows a rich set of impactful hyperparameters as they interact with
final network performance in intricate and sometimes counter-intuitive ways.

4.1 Hyperparameters

There are 15 hyperparameters for DeepTraffic’s default DQN implementation, some of which are
presented in Table 1. These hyperparameters fall into 3 categories: input parameters which specify
how the agent senses the world, gradient descent parameters which control general neural network
gradient parameters, and reinforcement learning specific parameters which control deep q learning
specific parameters.

Input parameters define the spatial and temporal features of the agent input. Increasing the size of the
input provides the agent with more information but also increases the computational cost of learning.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6: Scatter plots comparing submission parameters and submission scores (see §4.6).
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4.2 Insight: Size Matters

The best networks generally have the most parameters and many layers. As Fig. 3a shows, the
conventional wisdom holds up for DeepTraffic: the larger and deeper the network, the better the
performance. However, there is some diminishing returns when the input size to the network is too
large, as indicated by Fig. 6a. Accompanying the increased performance of networks with more
parameters, is the requirement that the number of training iterations increases as well as shown
in Fig. 3b. Therefore, the cost of using larger networks is a longer training time, which perhaps
contributes to the observed diminishing returns of adding more parameters.

4.3 Insight: Live in the Moment

Knowledge of temporal dynamics does not significantly improve the agent’s ability to achieve higher
reward. This is a counter-intuitive observation for a simulation that is fundamentally about planning
one’s trajectory through space and time. As Fig. 6e shows, not looking back in time at all provides
the best performance. Put another way, the temporal dynamics of the driving scene that led up to
the current state does not have a significant impact on the evolution of the environment in the future,
and thus optimization of actions through that environment does not need to consider the past. This
is surprising since the high-dimensional state space in Deep RL approaches commonly encode the
temporal dynamics of the scene in the definition of the state space [13, 15]. This is done in order
to capture a sequence of partial observations that in-sum form a more complete observation of the
state [29]. For DeepTraffic, the agent does not appear to need a larger temporal window (injecting
“short-term memory” into the state representation) in order to more fully specify the current state.

4.4 Insight: Look Far Forward

Looking ahead spatially suffers much less from diminishing returns than does looking behind. As
shown in Fig. 6c, the more of the state space in front of the agent that the network is able to consider,
the more successful it is at avoiding situations that block it in. Fig. 6d, on the other hand, shows
that performance gains level off quickly after more than 5 patches behind the agent are considered.
Spatially, the future holds more promise than the past. Similarly, Fig. 6b shows that increases how far
to the sides the agent looks suffers from diminishing returns as well, maxing out at 3 lanes to each
side. The value of 3 in Fig. 6b represents sideways visibility that covers all lanes when the vehicle is
positioned in the middle lane. In general, high-performance agents tend to prefer the middle lane that
allows them the greatest flexibility in longer-term navigation through the vehicles ahead of it.

4.5 Insight: Plan for the Future

One of the defining challenges for reinforcement learning is the temporal credit assignment problem
[23], that is, assigning value to an action in a specific state even though that action’s consequences do
not materialize until much later in time. As shown in Fig. 6f, minimizing the discounting of future
reward by increasing γ (referred to as “gamma” in the figure) nearly always improves performance.
Much like the previous insight, the future is valuable for estimating the expected reward and planning
ones actions accordingly. Achieving good average speed requires that the agent avoid clusters of
other cars, and often the avoidance strategy requires planning many moves ahead.

4.6 Insight: Evaluation is Expensive

Fig. 5 shows that it takes at least ten million simulation time steps (shown as 100 evaluation runs in
the figure) to converge towards a stable estimation of deep reinforcement learning agent performance
with a standard deviation of possible scores falling below 0.1. One of the open problems of running
a deep reinforcement learning competition is to have an effective way of ranking the performance
of the submitted policy networks. The very large size and non-deterministic nature of the state
space make stable, consistent, and fair evaluation of an agent very challenging, given the amount of
computational resources it takes to execute a forward pass 10+ million times through a network with
40,000+ parameters for each of the 13,000+ agents submitted to date.
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5 Conclusion

In this work we seek to make deep reinforcement learning accessible to tens of thousands of students,
researchers, and educators by providing a micro-traffic simulation with in-browser neural network
training capabilities. We look back at the crowdsourced hyperparameter space exploration and draw
insights from what was effective to improving overall agent performance. We provide the traces of
this exploration as the “Human-Based Hyperparameter Tuning” dataset.
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