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Abstract— We study the use of kinematic and dynamic vehicle
models for model-based control design used in autonomous
driving. In particular, we analyze the statistics of the forecast
error of these two models by using experimental data. In
addition, we study the effect of discretization on forecast error.

We use the results of the first part to motivate the design of
a controller for an autonomous vehicle using model predictive
control (MPC) and a simple kinematic bicycle model. The
proposed approach is less computationally expensive than
existing methods which use vehicle tire models. Moreover it
can be implemented at low vehicle speeds where tire models
become singular. Experimental results show the effectiveness of
the proposed approach at various speeds on windy roads.

I. INTRODUCTION

Work in autonomous vehicles has grown dramatically in
the past several years due to advances in computing and
sensing technologies. However, the idea of an autonomous
vehicle has been around as early as the 1920s [1]. Recent
competitions [2]–[4] have accelerated the research in this
area and helped advance sensors and algorithms needed to
design an autonomous vehicle.

The main components of a modern autonomous vehicle are
localization, perception, and control. This paper will discuss
the control of the vehicle’s acceleration, brake, and steering
using Model Predictive Control (MPC). In MPC [5] at each
sampling time step, starting at the current state, an open-
loop optimal control problem is solved over a finite horizon.
The optimal command signal is applied to the process only
during the following sampling interval. At the next time step
a new optimal control problem based on new measurements
is solved over a shifted horizon. The optimal solution relies
on a dynamic model of the process, respects input and output
constraints, and minimizes a performance index.

MPC has been successful in semi-autonomous and au-
tonomous driving [6]–[10]. In fact, MPC is suited for this
class of problems since it can handle Multi-Input Multi-
Output systems with input and state constraints while taking
into account the nonlinear dynamics of the vehicle. More-
over, the design task of path-generation and path-following
is simplified: the reference path fed to the MPC controller
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does not need to be physically realizable, i.e respect dynamic
constraints.

Published MPC schemes use dynamic vehicle models [11,
p. 15-46] combined with linear [10], Pacejka [8], and Fiala
[7] tire models. This approach has two disadvantages: it
is computationally expensive and any tire model becomes
singular at low vehicle speeds. Tire models use a tire slip
angle estimation term which has the vehicle velocity in the
denominator. This prohibits the use of the same control
design for stop-and-go scenarios, common in urban driving.

In this paper, we propose to address both disadvantages
by using a kinematic bicycle model. The paper has two
contributions: In the first part, a comparison between a
kinematic and dynamic bicycle model. The dynamic model
utilizes a linear tire model to describe the wheel/ground
interaction. We examine how well the two models are able to
predict a vehicle’s future states compared to measured states
of an experimental test. We also study the effect of sampling
time on forecast error. Our unintuitive results show that the
error statistics are comparable for both models especially
when the kinematic model is sampled at a slower rate. We
present data and provide an explanation of the findings.

In the second part, we use the results of the first part to
motivate the design of a controller for an autonomous vehicle
using model predictive control (MPC) and a kinematic bicy-
cle model. The proposed approach is less computationally ex-
pensive than existing methods which use vehicle tire models.
Moreover it can be implemented at low vehicle speeds where
tire models become singular. We present experimental results
which show that the proposed controller provides satisfactory
control performance in a simulation and a wide range of
experiments.

The paper is organized as follows. In Section II, an
overview of the kinematic bicycle model and dynamic bi-
cycle model are discussed. These two models are compared
in Section III. Section IV presents our proposed MPC
formulation. Section V discusses the experimental setup. The
experimental results of the controller are presented in Section
VI. We conclude in Section VII.

II. VEHICLE MODELS

A. Kinematic Bicycle Model

The nonlinear continuous time equations that describe a
kinematic bicycle model [11, p. 26] (see Figure 1) in an



inertial frame are

ẋ = v cos(ψ + β) (1a)
ẏ = v sin(ψ + β) (1b)

ψ̇ =
v

lr
sin(β) (1c)

v̇ = a (1d)

β = tan−1

(
lr

lf + lr
tan(δf )

)
(1e)

where x and y are the coordinates of the center of mass
in an inertial frame (X , Y ). ψ is the inertial heading and v
is the speed of the vehicle. lf and lr represent the distance
from the center of the mass of the vehicle to the front and
rear axles, respectively. β is the angle of the current velocity
of the center of mass with respect to the longitudinal axis of
the car. a is the acceleration of the center of mass in the same
direction as the velocity. The control inputs are the front and
rear steering angles δf , and a. Since in most vehicles the
rear wheels cannot be steered, we assume δr = 0.

Fig. 1: Kinematic Bicycle Model

Compared to higher fidelity vehicle models, the system
identification on the kinematic bicycle model is easier be-
cause there are only two parameters to identify, lf and lr.
This makes it simpler to port the same controller or path
planner to other vehicles with differently sized wheelbases.

B. Dynamic Bicycle Model

The inertial position coordinates and heading angle in
the dynamic bicycle model [11, p. 27] are defined in the
same manner as those in the kinematic bicycle model. The
differential equations in this case are given by,

ẍ = ψ̇ẏ + ax (2a)

ÿ = −ψ̇ẋ+
2

m
(Fc,f cos δf + Fc,r) (2b)

ψ̈ =
2

Iz
(lfFc,f − lrFc,r) (2c)

Ẋ = ẋ cosψ − ẏ sinψ (2d)

Ẏ = ẋ sinψ + ẏ cosψ, (2e)

where ẋ and ẏ denote the longitudinal and lateral speeds
in the body frame, respectively and ψ̇ denotes the yaw

rate. m and Iz denote the vehicle’s mass and yaw inertia,
respectively. Fc,f and Fc,r denote the lateral tire forces at
the front and rear wheels, respectively, in coordinate frames
aligned with the wheels.

For the linear tire model, Fc,i is defined as

Fc,i = −Cαi
αi, (3)

where i ∈ {f, r}, αi is the tire slip angle and Cαi is the tire
cornering stiffness.

III. COMPARISON BETWEEN DYNAMIC AND KINEMATIC
MODELS

We performed an experiment where the vehicle states are
measured during driving the winding track at Hyundai’s Cali-
fornia Proving Grounds (CPG) in California City, California.
We also perform a large number of of N -step simulations (as
many as the size of our dataset). In each simulation, a vehicle
model (kinematic or dynamic) is initialized with a measured
state and a N -step measured input sequence is input to the
model. The models are discretized using Euler methods and
are sampled at td =100 ms or at td =200 ms.

The simulated states are compared to the measured state
of the vehicle to examine the accuracy of both the kinematic
and dynamic model. This will be referred to as the open-loop
prediction error.

A. Test setup

The test vehicle used was a Hyundai Azera (total wheel-
base of 2.843 m, lf =1.105 m and lr = 1.738 m), which
is front wheel driven. The localization of the car is done
by using a GPS base station. An OTS (Oxford Technical
Solutions) RT2002 sensing system is used which measures
the position and heading of the vehicle in the inertial frame.
The OTS RT2002 system is comprised of a differential GPS,
an IMU (inertial measurement unit) and a DSP (digital signal
processor).

The positioning errors of the OTS system vary depending
on the current modes of the GPS base station. The current
mode depends on the number of available satellites and the
communication between the vehicle and the base station. The
possible modes in our tests are RTK (real-time kinematic)
integer precision (σ = 0.02 m) or differential GPS precision
(σ = 0.4 m). In both modes, the precision of the measured
heading angle is the same (σ = 0.1 deg).

For our experiment, the test vehicle was driven on the
winding track at CPG. The winding track is a varied road
course with many turns and straight line paths. This makes
it an ideal testbed for our experiments to compare different
models.

The average speed on this drive was 13.8 m/s, with a
standard deviation of 3 m/s. The maximum driven speed was
17.1 m/s.

B. Model Comparison

Figure 2 shows distributions of open-loop prediction errors
for the kinematic and dynamic bicycle model discretized at
100 ms and reported at multiples of 200 ms steps. These plots



TABLE I: Open-Loop Errors at Multiples of 200 ms (one step = 200 ms)

Mean/Std Dev Errors at 200 ms steps
Model and Discretization 1-Step 2-Step 3-Step 4-Step

Kinematic - 100 ms 0.08±0.04 m 0.16±0.06 m 0.27±0.11 m 0.40±0.19 m
Kinematic - 200 ms 0.07±0.04 m 0.14±0.05 m 0.22±0.08 m 0.33±0.13 m
Linear Tire - 100 ms 0.07±0.04 m 0.13±0.04 m 0.20±0.05 m 0.27±0.06 m
Linear Tire - 200 ms 0.08±0.04 m 0.15±0.05 m 0.23±0.06 m 0.31±0.08 m
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Fig. 2: Distribution of distance errors between the predictions
and the actual location of the vehicle at multiple of 200 ms
on the winding track (one step=200 ms). These models are
discretized at 100 ms.

also show the average error and standard deviation for both
models. The error distributions are almost identical for the
first two steps. The kinematic model’s open-loop prediction
mean error at the third and fourth steps are greater than the
dynamic model’s open loop prediction error by 30% and
48%, with a larger standard deviation for both steps.

These results are summarized in Table I. This table also
shows the mean and standard deviation at different dis-
cretization times. We notice that a higher discretization time
helps the kinematic model and produces smaller errors and
standard deviations. This is explained next.

C. Discretization Effects

Larger discretization times allow the model to predict a
longer horizon whereas shorter discretization times tend to
produce more accurate predictions. Thus, there is often a
tradeoff between a longer horizon and accuracy. However,
this is not the case for the kinematic model as shown in our
study of the effect of discretization. It is observed that the
accuracy of the kinematic bicycle can be improved with a
longer discretization time.

Figure 3 shows a comparison of a continuous kinematic
model, Euler discretized kinematic model at 200 ms, and a
continuous dynamic model. In this figure, a constant velocity
and steering angle is used to forward propagate these three

models. It is observed that the gap between a discretized
kinematic model and a continuous dynamic model is smaller
than the gap between a continuous kinematic model and a
continuous dynamic model. Up to a point, if the discretiza-
tion is further increased, this gap will be further decreased.

The dynamic model considers slip and slip at the front axle
(understeering) generates wider turns. Since the truncation
errors from a discretized kinematic model cause a wider
turn, this allows the discretized kinematic model to generate
predictions more similar to a dynamic model.
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Fig. 3: Comparison of a continuous kinematic and dynamic
bicycle models against a kinematic model discretized at
200 ms

Discretization effects on the open-loop prediction error
on the winding track experiment are shown in Table I. It
is observed that the kinematic bicycle model discretized at
200 ms has smaller open-loop prediction errors compared to
discretizing at 100 ms. The dynamic model with a linear
tire model is also examined, and here the errors do not
benefit from a longer discretization time. At the fourth step,
800 ms, the kinematic model discretized at 200 ms has an
improvement of 17% compared being discretized at 100 ms.

Fig. 4: Simplified control architecture. The controller and the
path planner are run at every 100 ms. The discretization time
of the model used in the MPC controller is 200 ms.



IV. MODEL PREDICTIVE CONTROLLER

A. Control Design

The model comparisons done in Section III motivate the
design of an MPC controller using a kinematic bicycle
model. The diagram in Figure 4 shows a simplified architec-
ture with a high level algorithm that generates a path which
is followed by a low level MPC controller.

At each sampling time step, ts = 100 ms, the MPC con-
troller solves the following constrained finite-time optimal
control problem:

min
U

Hp∑
i=0

(zi − zref,i)
TQ(zi − zref,i) + (4a)

Hp−1∑
i=0

[
(ui − ui−1)T R̄(ui − ui−1) + uTi Rui

]
s.t. z0 = z(t),u−1 = u(t− ts) (4b)

zi+1 = f(zi,ui), i = 0, . . . ,Hp − 1 (4c)
umin,i ≤ ui ≤ umax,i, ∀i (4d)

u̇min,i ≤ ui−ui−1

td
≤ u̇max,i, ∀i\0 (4e)

u̇min,i ≤ ui−ui−1

ts
≤ u̇max,i, i = 0 (4f)

where Q ∈ R4×4
+ , R ∈ R2×2

+ , R̄ ∈ R2×2
+ , Hp is the predic-

tion horizon. Q, R and R̄ are diagonal matrices comprising
the cost weights. u−1 is the input applied at the previous
sampling step, u(t − ts). ts is the sampling time of the
controller, and td = 200 ms is the discretization time of the
model used in the MPC controller. A mismatch between ts
and td was introduced in order to achieve a longer prediction
time for the same prediction horizon in the controller while
preserving a higher state-feedback update rate. f(zi,ui)
represents the dynamics update with the kinematic bicycle
model through forward Euler.

The variables umin, u̇min and umax, u̇max represent
lower and upper bounds of the input and input rate con-
straints, respectively. The vector zref collects the reference
states of the planned path. The MPC controller implements

u(t) = u∗
0

at each iteration t.
A path planner creates a reference path which gives zi

for the entire horizon. There will be a short discussion on
how our path planner creates these reference paths in the
following section.
Remark: Although we presented a nominal MPC design here,
a robust MPC design based on the quantified uncertainty
presented in Section III could be employed and is the subject
of ongoing research [12].

V. CONTROLLER SETUP

The MPC controller, localization, and low level controllers
are all run using a dSpace MicroAutobox with an IBM
PowerPC processor running at 900 MHz. The controller uses
a general purpose nonlinear solver NPSOL [13] to solve the
MPC formulation.

The input and prediction horizon of the controller is 8
steps, thus looking ahead 1.6 s. The sampling time and
horizon was chosen with regards to the computational com-
plexity of the optimization problem and performance capa-
bilities of the MicroAutobox. The values for umin, u̇min and
umax, u̇max are shown in Table II.

TABLE II: Numerical values for input (rate) constraints

β a β̇ ȧ

minimum -37 ◦ −1.5m/s2 −10 ◦/s −3m/s3

maximum 37 ◦ 1m/s2 10 ◦/s 1.5m/s3

In order to create the reference path (zref,i), the car’s cur-
rent position is projected onto the reference track/centerline
of the of the street, and the reference path is generated from
this position to follow the track. The reference path is placed
ahead of the vehicle. The distance between reference points
is a function of the desired velocity.

VI. RESULTS

Three types of experiments are performed. First, we test
the low-speed performance of the controller at a closed street.
Next, the tracking of a sinusoidal trajectory and finally the
path following on a winding track are analyzed. The second
and third experiment are performed at the CPG.

A. Low-Speed Tracking
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Fig. 5: Experimental results from a low-speed tracking of a
right turn. The reference speed varies from 0 to 6 m/s.

We show that the proposed controller is able to operate in a
stop and go scenario. We conducted an experiment where the
reference trajectory is a right turn and the reference velocity
ranges from 0 to 6 m/s.

The results are shown in Figure 5. The controller tracks
the reference velocities well and is able to handle the stop
and go situation. The mean and standard deviation of the



distance error relative from the reference path is µ = 0.03 m
and σ = 0.03 m, respectively. A maximum error of 0.15 m,
which occurs during the turn.

B. Sinusoidal Path Following Results

We present the tracking results using a sinusoidal reference
with an amplitude of 4 m and a wavelength of 100 m.
Two experiments are presented. In the first experiment, the
reference speed along the X-axis is vx = 10 m/s. In the
second experiment, the reference speed along the X-axis is
vx = 15 m/s. The reference speed along the longitudinal axis
of the vehicle is

vref = vx ·
√

1 + (A · ω)2 · cos2(ωx) (5)

where ω = 2π
D and x is the vehicle’s position on the X-axis.

D is the wavelength and A is the amplitude of the sine, both
in meters.

The origin of the inertial coordinate frame is set at the
vehicle’s starting position. A reference trajectory is created
at each time step and is based on the current position of the
car relative to the origin. This reference trajectory generates
the zref according to the velocity reference and the location
of the car on the sinusoidal path.

In our experiments, the vehicle starts at a standstill. After
a few cycles, it reaches the desired velocity and evolves
with periodic dynamics. In Figure 6, the steady state results
at both speeds are reported. This figure also highlights the
difference between the MPC open-loop predictions and the
closed-loop behavior. A finite horizon, model mismatch, sen-
sor noise and external disturbances can affect the mismatch.
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Fig. 6: Steady state test results for following a sinusoidal
trajectory Y = 4 · sin(2π/100 · X). On the left, the car
follows a speed reference of vx = 10 m/s. On the right, the
car follows a speed reference of vx = 15 m/s. For clarity,
open loop trajectories are only shown every 5 time steps.

In Figure 6, one can observe that the deviation from
the reference path is larger for higher speeds. This is due
to the higher lateral forces and therefore higher side slip
angle of the tires which then negatively affects the accuracy
of model forecast. Figure 6 also emphasizes one of the
drawbacks of using a kinematic bicycle model in an MPC
controller. Even a well-tuned controller may have trouble
following a trajectory with high lateral acceleration because
the model mismatch becomes more pronounced. This is
clearly displayed in the open-loop trajectories predicted by
the controller in the vx = 15 m/s case, where the open-loop
trajectories no longer match the closed-loop path of the car.
Since the vehicle is understeering, the turns driven by the
car are always wider than assumed by the controller.

In the experiment where vx = 10 m/s, the average error
and standard deviation from the reference trajectory is 0.41 m
and 0.25 m, respectively. When vx = 15 m/s, the average
error and standard deviation from the reference trajectory is
1.08 m and 0.68 m, respectively.

C. Winding Track Results

The winding track was used as a testbed for the experi-
ments in this section. A map of the winding track was created
along with a speed reference at different points along the
map. The speed reference on the map, or a speed map, was
obtained by recording the driving data of a human driver on
this track. The first experiment follows the human driven
speed reference. In a subsequent experiment, this speed
reference is scaled by a factor of 0.7. Table III provides
information on the speed range used for the autonomous
drive for both tests.

TABLE III: Velocity information about the winding track

Scaling Avg. Speed Max. Speed Min. Speed Std. Deviation

0.7 10.8 m/s 15.56 m/s 5 m/s 2.14 m/s
1 15.4 m/s 22.23 m/s 7.2 m/s 3 m/s

Our results show good performance of the proposed MPC
controller to track the reference path. In Figure 7, the
distributions of reference trajectory errors are shown for
different scaled speeds. The average centerline error at a
scaled speed of 0.7 and 1 is 0.26 m and 0.58 m, respectively.
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Fig. 7: Distribution of tracking errors relative to the reference
trajectory for two reference speeds.



Similar to the sinusoidal reference, Figure 8 displays the
open-loop trajectories versus the closed-loop measured GPS
positions on the winding track. On the straight line path,
the kinematic model accurately models the predicted paths
at both scaling factors. However, as is seen in Figure 8, the
reference tracking at higher speeds is not as good due to the
larger lateral acceleration, which causes more slip. When the
lateral acceleration grows larger, it becomes more critical to
use a model which takes into consideration slip, such as a
dynamic bicycle model.
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road are shown for an experiment at a scaled speed of 0.7.
On the right side are the same positions on the track at a
scaled speed of 1.

VII. CONCLUSION

Comparisons between the kinematic bicycle model and
dynamic bicycle model were done in order to motivate an
MPC controller design. Our study shows that the kinematic
model discretized at 200 ms is able to perform similarly well
to a dynamic model discretized at 100 ms. In addition, our
analysis shows that the kinematic model has better forecast
errors when discretized at 200 ms compared to 100 ms.

These comparison results motivate a design of an au-
tonomous vehicle controller by using model predictive con-
trol (MPC) framework and a kinematic bicycle model.
Existing MPC approaches for vehicle control use higher
fidelity models that include the tire and road interaction.
The proposed approach requires less computational power
and can be implemented at a wide range of vehicle speeds
including zero speed.

A variety of experimental results show the effectiveness
of the proposed approach at various speeds. We showed that

our controller is able to control the vehicle in a stop-and-go
scenario. For the winding track and sinusoidal experimental
tests, the proposed controller is able to track varied refer-
ence trajectories well at lower speeds. On the higher speed
sinusoidal and winding track tests, the reference errors grow
significantly and a tire model based controller would be more
appropriate.

The predictive capability of the kinematic bicycle model at
different lateral accelerations can be further studied together
with a with an optimization of the discretization time. To
increase performance, the path planner can also limit the
reference velocity such that the lateral acceleration cannot
surpass a certain value.
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